
International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Speed Power and Area Efficent VLSI
Architectures of Multiplier and Accumulator

Naveen Kumar, Manu Bansal, AmandeepKaur

Abstract—This paper describes the comparison of VLSI architectures on the basis of Speed, Area and Power of different type of Adders
like Carry Chain Adder, Carry Look Ahead Adder, Carry Skip Adder, and Carry Select Adder and 32-bit pipelined Booth Wallace MAC Unit
with Carry Chain Adder, Carry Look Ahead Adder, Carry Skip Adder, and Carry Select Adder is designed in which the multiplication is done
using the Modified Booth Wallace algorithm and the pipelining is done in the Booth Multiplier and Wallace Tree to increase the speed. All
Adder and MAC are described in VHDL and synthesized the circuit using 90 nm standard cell library on FPGA and Synopsys Design
Compiler. As an hardware implementation all the adder and MAC are implemented on FPGA with test benches to cover all cases on
Spartan 3E kit with LCD and Keyboard interfacing.

Index Terms—Multiplier, Adder, Pipelining, High-speed, modified Booth algorithm, Synopsys Design Compiler, FPGA.

————————————————————

1 INTRODUCTION
he core of every microprocessor, DSP, and data-
processing ASIC is its data path. Statistics showed that
more than 70% of the instructions perform additions and

multiplications in the data path of RISC machines [1]. At the
heart of data-path and addressing units in turn are arithmetic
units, such as adders, and multipliers. Multiplication based
operations such as Multiply and Accumulate and inner prod-
uct are among some of the frequently used Computation-
Intensive Arithmetic Functions, currently implemented in
many DSP applications such as convolution, fast Fourier trans-
form, filtering and in microprocessors in its arithmetic and
logic unit. Since multiplication dominates the execution time
of most DSP algorithms, so there is a need of high speed mul-
tiplier. The demand for high speed processing has been in-
creasing as a result of expanding computer and signal pro-
cessing applications.
Pipelined MAC based on Booth Wallace with Carry Select
Adder is one of the fastest MAC Unit and Pipelined MAC
with Carry Look Ahead Adder and MAC with Carry Skip
Adder require the low power and less area. Modified Booth
algorithm reduces the number of partial products to be gener-
ated and is known as the fastest multiplication algorithm and
many researches on the multiplier architectures including ar-
ray, parallel and pipelined multipliers have been pursued
which shows that pipelining is the most widely used tech-
nique to reduce the propagation delays of digital circuits.
Finally, the basic operation found in MAC is the binary addi-
tion. Therefore, binary addition is the most important arithme-
tic operation. It is also a very critical one if implemented in
hardware because it involves an expensive carry-propagation
step, the evaluation time of which is dependent on the oper-
ands.

2 ADDER ARCHITECTURES
2.1 Ripple Carry Adder
This is the simplest design in which the carry-out of one bit is
simply connected as the carry-in to the next [1]. It can be im-
plemented as a combination circuit using n full-adder in series
as shown in Fig 1 and is called ripple-carry adder.

Fig 1: Ripple carry implementation of CPA.

The latency of k-bit ripple-carry adder can be derived by con-
sidering the worst-case signal propagation path. As shown in
Fig 2 the critical path usually begins at the x0 or y0 input pro-
ceeds through the carry-propagation chain to the leftmost FA
and terminates at the sk-1 output.

Fig 2:Critical paths in a k-bit RCA [11].

The critical path might begin at c0 and/or terminate at ck.
However given that the delay from carry-in to carry-out is
more important than from x to cout or from cin to s, full-adder
designs often minimize the delay from cin to cout, making the
path as shown in Fig 2 with the largest delay. Thus the expres-
sion for latency of k-bit ripple-carry adder is

௥ܶ௜௣௣௟௘ି௔ௗௗ = ிܶ஺(ݕ,ݔ → ܿ௢௨௧) + (݇ − 2) ∗ ிܶ஺(௜ܿ௡ → ܿ௢௨௧)
+ ிܶ஺(௜ܿ௡ → (ݏ

Where TFA (inputoutput) represents the latency of a full-
adder on path between its specified input and output. As an
approximation to the foregoing, it can be concluded that the
latency of a ripple-carry adder is	kT୊୅[11]. It is seen that the
latency grows linearly with k, making the ripple-carry design
undesirable for large k or for high-performance arithmetic
unit. However a carry completion detection adder takes ad-

T

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

vantage of the logଶ k average length of the longest carry chain
to add two k-bit binary number in O (log k) time on the aver-
age.

2.2 Carry-look ahead Adder
The carry-look ahead adder (CLA) [18] computes group gen-
erate signals as well as group propagate signals to avoid wait-
ing for a ripple to determine if the first group generates a carry
or not. From the point of view of carry propagation and the
design of a carry network the actual operand digits are not
important. What matters is whether in a given position a carry
isgenerated, propagated or annihilated. In the case of binary
addition the generate (gi), propagate(pi) and annihilate(ai)
signals [11][19][20] are characterized by the following logic
equations:

݃௜ = ௜ݕ.௜ݔ
௜݌ = 	௜ܽ݅ݕ௜ݔ = ݅ݔ൫ݐ݋݊ + 	 ൯݅ݕ

௜ݐ = ௜ݔ + ௜ݕ
Thus assuming that the above signals are produced and made
available, the rest of the carry network design can be based on
them and become completely independent of the operands or
even the number representation radix. Using the preceding
signals, the carry recurrence can be written as follow
c୧ାଵ = g୧ + c୧. p୧
The carry recurrence essentially states that a carry will enter
stage i+1 if it is generated in stage i. The later version of carry
recurrence leads to slightly faster adders because in binary
addition, ti is easier to produce than pi. (OR instead of XOR).
c୧ାଵ = g୧ + c୧. t୧ .

Fig3: Carry Look Ahead Logic in CLA.

Carry-look ahead adder hardware may be designed as shown
in Fig 3. The carry-look ahead logic consists of two logic
levels, AND gates followed by an OR gate, for each ci when
the adder inputs are loaded in parallel, all gi and pi will be
generated at the same time. The carry-look ahead logic allows
carry for each bit to be computed independently. Ide-
ally, the carry signal ci will be produced through two-stage
logic at the same time, which means that the adder will have a
constant time complexity. However, it is impractical to build a
two stage full large-size carry-look ahead adder because of the

practical limitations on fan-in and fan-out, irregular
structure, and long wires delay [1]. The total delay of the car-
ry-look ahead adder is O (log k) which can be significantly
less than the carry chain adder. There is a penalty paid for this
gain in term increased area. The carry- look ahead adders re-
quire O (k * log k) area. It seems that a carry-look ahead adder
larger than 256 bits is not cost effective. Even by employing
block carry-look ahead approach, a carry-look ahead adder
with 1024 bits seems not feasible or cost effective [1].

2.3Carry Skip Adder
The carry skip adder (CSKA) [11][21] was invented for deci-
mal arithmetic operations. The CSKA is an improvement over
the ripple-carry adder. By grouping the ripple cells to-
gether into blocks, it makes the carry signal available to the
blocks further down the carry chain, earlier. The primary car-
ry ci coming into a block can go out of it unchanged if
and only if, xi and yi are exclusive-or of each other. This
means that corresponding bits of both operands within a block
should be dissimilar.
If xi = yi = 1, then the block generates a carry without waiting
for the incoming carry signal. And the generated carry will be
used by blocks beyond this block in the carry chain.
If xi = yi = 0, then the block does not generate a carry and will
absorb any carry coming into it by AND all pi of a block.
The skip signal will be generated to select between the incom-
ing carry and the generated carry using a 2:1 multiplexer as
shown in Fig 4. The last FA stage of a block will generate a
carry, if any, before arrival of the input carry ci. When the in-
put carry arrives, it needs to pass through two logic gates
only so that the output carry ci+1 will stabilize.

c i-1

x i y ix i+1 y i+1

p is i
s i+1

p i+1

Skip signal

c i
c

Fig 4:Carry-skip logic [12].

Subsequent blocks can have larger size so that the carry will
skip more bits and the adder speed will be increased. In this
case, the adder is called one-level carry-skip adder with varia-
ble block sizes. The skip logic determines whether a carry
entering one block may skip the next group of blocks.
However, the main design problem with the adder is working
out how best to group the skips.
The carry-skip adder has a simple and regular struc-
ture that requires an area in the order of O (k) which is hardly
larger than the area required by the ripple-carry adder. The
time complexity of the carry-skip adder is bounded between
O (k) and O (log k). An equal block size one-level carry-skip
adder will have a time complexity of O (k). Block width tre-
mendously affects the latency of adder. More number of

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

blocks means block width is less, hence more delay.

2.4 Carry Select Adder
The carry-select adder (CSLA) comes in the category of condi-
tional sum adder. Conditional sum adder works on some con-
dition this scheme; blocks of bits are added in two ways: as-
suming an incoming carry of 0 or 1, with the correct outputs
selected later as the block's true carry-in becomes known. With
each level of selection, the number of known output bits dou-
bles, and leading to a logarithmic number of levels and thus
logarithmic time addition.
A single-level carry-select adder [11] is one that combines
three kl/2-bit adders of any design into a k-bit adder as shown
in Fig 5. One k1/2-bit adder is used to compute the lower half
of the k-bit sum directly. Two k1/2-bit adders are used to
compute the upper k1/2-bits of the sum and the carry-out un-
der two different scenarios: Ck/2 = 0 and Ck/2 = 1. The cor-
rect values for the adder's carry-out signal and the sum bits in
positions kl/2 through k - 1 are selected when the value of
Ck/2 becomes known. This technique of dividing adder in
two stages increases the area utilization but addition operation
fastens.

4-bit
Adder

4-bit
Adder

4-bit
Adder

MUX
M
U
X

M
U
X

MUX

1

0
0

Z[3:0]Z[7:4]Z[63:60]Cout

1

0

Fig 5:Carry Select Adder.

3PIPELINED MULTIPLIER AND ACCUMULATOR

In order to improve the speed of the MAC unit, there are two
major bottlenecks that need to be considered. The first one is
the fast multiplication network and the second one is the ac-
cumulator. Both of these stages require addition of large oper-
ands that involve long paths for carry propagation.
The pipeline technique is widely used to improve the perfor-
mance of digital circuits. As the number of pipeline stages is
increased, the path delays of each stage are decreased and the
overall performance of the circuit is improved [6]. The various
pipeline schemes have been investigated to find the optimum
number of pipeline stages and the positions for the pipeline
registers to be inserted in modified Booth multiplier in order
to obtain the high-speed.
The MAC unit basically do the multiplication of two numbers
multiplier and multiplicand and add that product in result
stored in the accumulator. The general construction of the
MAC operation can be represented by this equation:

Where the multiplier A and multiplicand B are assumed to
have n bits each and the addend Z has (2n+1) bits. A basic
MAC unit as shown in Fig 6 can be divided into two main
blocks [2].
Multiplier
Accumulator

3.1 Multiplier
Multiplication is a mathematical operation that at its simplest
is an abbreviated process of adding an integer to itself a speci-
fied number of times. A number (multiplicand) is added to
itself a number of times as specified by another number (mul-
tiplier) to form a result. A Fast Multiplication process consists
of three steps [3]:
Partial Product Generation.
Partial Product Reduction.
Final stage Carry Propagate Adder.

Fig 6: Basic Architecture of Pipelined MAC Unit.

Partial Product Generation:To generate the number of par-
tial product Radix-4 Modified booth encoding techniques have
been used [4]. The Modified Booth Encoding (MBE) or Modi-
fied Booth’s Algorithm (MBA) was proposed by O. L. Macsor-
ley in 1961 [5]. Booth's radix-4 algorithm is widely used to re-
duce the area of multiplier and to increase the speed. The
booth encoding algorithm is a bit-pair encoding algorithm that
generates partial products which are multiples of the multipli-

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

cand. The booth algorithm shifts and/or complements the
multiplicand (X operand) based on the bit patterns of the mul-
tiplier (Y operand). Essentially, three multiplier bits [Y (i+1) ,Y
(i) and Y (i-1)] are encoded into eight bits that are used to
select multiples of the multiplicand [-2X,-X,0,+X,+2X] The
three multiplier bits consist of a new bit pair [Y (i+1) and Y (i)]
and the leftmost bit from the previously encoded bit pair [Y (i-
1)]. Grouping the three bits of multiplier with overlapping has
half partial products which improve the system speed.
Radix-4 Modified Booth's algorithm [6] is:

 Y (i-1) = 0; Insert 0 on the right side of LSB of multi-
plier.

 Start grouping each three bits with overlapping from
Y (i-1).

 If the number of multiplier bits is odd, add a extra 1
bit on left side of MSB and generate partial product
from Table 1.

 When new partial product is generated, each partial
product is added two bit left shifting in regular se-
quence.

 It is then sign extended.

TABLE 1
RADIX-4 MODIFIED BOOTH ALGORITHM [6].

Yi+1 Yi Yi-1 Recoded Digit Operand Multiplication
0 0 0 0 0 x multiplicand
0 0 1 +1 +1 x multiplicand
0 1 0 +1 +1 x multiplicand
0 1 1 +2 +2 x multiplicand
1 0 0 -2 -2 x multiplicand
1 0 1 -1 -1 x multiplicand
1 1 0 -1 -1 x multiplicand
1 1 1 0 0 x multiplicand

Pipelining in Booth Multiplier:At first, modified Booth
multiplier is partitioned into three pipeline stages according to
the functionality of the circuit as shown in Fig 6. The critical
path of the pipelined Booth multiplier is in the Wallace tree
because it requires the most intensive computation. It means
that delays can be further reduced by adding more pipeline
registers within the Wallace Tree as shown in Fig 8.

Partial Product Compression:Multiplier require high
amount of power and delay during the partial products
addition. At this stage, most of the multipliers are designed
with different kind of multi operands adders that are capable
to add more than two input operands and results in two
outputs, sum and carry. The number of adders will be
minimized by Wallace Tree.

4:2 Compressors:It has 4 input lines X0, X1, X2, X3 that
must be summed and has two output lines C and S which are
so called result of compression. A 4:2 compressor can be im-
plemented with two stages of full adder (FA) connected in
series as shown in Fig 7.Indeed a 4:2 structure is not a counter,
since two output bits cannot represent five possible sums of

four bits. Thus a carry out is necessary and subsequently carry
in. The 4:2 compressor structure actually compress five input
bit into three output. The output of 4:2 compressor consists of
one bit (sum) in position j and two bits in final carry and in-
termediate carry in position (j+1). However a carry out is in-
dependent on carry in as shown in Fig 7.

Carry in

A
B

cinSum Sum

Carry

3 XOR
Gates

Carry

Carry-Out

A
B

cin

In1

In2

In3

In4

Fig7:4:2 compressor logic diagram [7].

Pipelined Wallace Tree: Wallace Tree is a reduction tech-
nique that uses the carry save adder to add the partial prod-
ucts. A block diagram for the data distribution among a tree
architecture that employs 4:2 compressors is shown in Fig 8.

Fig8 :Pipelined Wallace Tree.

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Each box contains the bits that are fed into a 4:2 compressor
cell. It is, however, still the most critical part of the multiplier
because it is responsible for the largest amount of computa-
tion. Naturally the pipeline registers should be inserted within
the Wallace tree to improve the performance as shown in Fig
8.The number of partial products of the N-bit modified Booth
multiplier is N/2[4][5][6]. In case of the 32-bit modified Booth
multiplier, the number of partial products is sixteen. In this
three stage of pipelining is used, in 1st stage sum and carry of
first four rows of compressors are stored in two pipeline regis-
ters. In 2nd stage these sum and carry are fed into the fifth and
sixth row of compressors and their output is stored in pipeline
registers. In 3rd stage the sum and carry of fifth and sixth row
are added in seventh row of compressors. The Wallace tree
adds four rows and generates two rows using 4:2 compres-
sors. One row represents the carries and the other row repre-
sents the sums.

Final stage Carry Propagate Adder: This stage is also
crucial for any multiplier because in this stage addition of
large size operands is performed so in thisstage fast carry
propagate adders like Carry-look Ahead Adder or Carry Skip
Adder or Carry Select Adder can be used as per our
requirement like Speed, Power and Area.

3.2 Accumulator
Accumulator basically consists of register and adder. Register
hold the output of previous clock from adder. Holding out-
puts in accumulation register can reduce additional add in-
struction. An accumulator should be fast in response so it can
be implemented with one of fastest adder like Carry-look
Ahead Adder or Carry Skip Adder or Carry Select Adder.
.
4 EXPERIMENTAL RESULTS

The 32-bit Pipelined Booth Wallace MAC has been imple-
mented on Spartan XC3S500-4FG320 device and simulated
using Modelsimand synthesized using 90 nm technology us-
ing Synopsys Design Compiler and its results compared with
the conventional MAC unit.

4.1 Simulation Results:
a,b : Input Data 32-bit
clk :Input Clock
z : Output Data 64-bit

Fig 9: Simulated Waveform of Pipelined Booth Wallace MAC Unit

TABLE 2

SIMULATION RESULT VERIFICATION OF PIPELINED BOOTH WALLACE
MAC UNIT.

 clk1 clk2 clk3 clk4 clk5 clk6 clk7 clk8 clk9

A 5 5 4 4 4 4 4 4 5

b 3 3 3 3 3 3 3 3 7

Z 15 30 45 60 75 90 105 117 129

There is latency of 5 clock cycle means we get the final output of
MAC in 6th clock cycle which is clear from the Table 2 and from
Fig 9.

4.2 Synthesis Results

TABLE3
 FPGA SYNTHESIS RESULTS OF DIFFERENT ADDERS.

However CSLA has more LUTs than CCA and CLA but less
than CSKA but it has very less combinational path delay. So
CSLA is the best adder architecture where the operands size is
large.

TABLE 4
DC SYNTHESIS RESULTS OF CARRY CHAIN ADDER.

CSLA has comparatively low value of critical path length
hence less combinational path delay but it has higher no. of
leaf cell count and combinational path area. It also has high
dynamic power than other adder architectures. It’s clear from
the tables that CLA and CSKA architectures can be used for

Size CCA CLA CSLA CSKA
No. of Slices 74 78 113 120
4 input LUTs 128 143 210 223
Bonded IOs 194 194 194 194
Level of Logic 66 66 35 90
Logic Delay (%) 61.2 61.8 57.4 63.2
Route Delay (%) 38.8 38.2 42.6 36.8
Max.Comb. Delay (ns) 80.954 70.909 48.31 80.923

Adder Type CCA CLA CSLA CSKA
Level of Logic 66 64 23 67
Critical Path length 9.11 12.13 4.49 8.68
Leaf Cell Count 223 191 544 256
Total no. of NET 352 319 673 385
Comb.Area 1479 1432 3587 2057
Dyn. Power(uW) 220 195 497 248
Lkg.Power(nW) 952 904 2.14uW 1.13uW

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 6
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

low power applications as it has low value of dynamic as well
cell leakage power.

TABLE 5
 FPGA SYNTHESIS RESULTS OF 32-BIT MAC UNIT.

Final Stage Adder CCA CLA CSLA CSKA
No. Of Slices 2179 2229 2071 2195
Slice Flip-Flops 735 927 776 719
4 input LUTs 4193 4303 4013 4231
LUT Utilization % 45% 46% 43% 45%
Bonded IOs 131 131 131 131
Level of Logic 13 12 12 14
Clock Period(ns) 15.994 14.577 14.081 15.614
Frequency (MHz) 62.523 68.601 71.018 64.045
Total Power (mW) 356.92 363.97 376.67 394.25

The Table 5 shows that the LUTs used in 32-bit MAC with
CSLA is lesser than other MAC architectures and has higher
frequency of operations. So 32-bit MAC with CSLA is best in
term of LUTs and frequency of operations but it requires more
power supply than other MAC architectures. However MAC
with CLA require less power supply than MAC with other
adder architectures.

TABLE 6
 DC SYNTHESIS RESULTS OF 32-BIT MAC UNIT.

Adder Type CCA CLA CSLA CSKA

Levels of Logic 37 35 54 49

Critical Path length 3.27 3.24 3.82 4.02

WNS -0.46 -0.44 -1 -1.21

CLK Period(ns) 3 3 3 3

Leaf Cell Count 17026 17360 13518 12936

Comb. Area (C) 127823 130473 98513 89910

Seq. Area (S) 2751 2696 2698 2698

C/S Ratio 46.45 48.39 36.50 33.31

 Design Area 130575 133169 101212 92609

Dyn.power(mW) 15.7928 15.7229 13.0224 11.46

 Leakage Power(uW) 101.5989 103.3779 74.9818 67.33

According to DC synthesis Results Table 6 for a fixed clock
period, MAC with CLA has less value of critical path length
so have less value of critical path slack as well as total negative
slack value so it can run on higher frequency than other 32-bit
MAC architectures. However CSKA has less value of leaf cell
count and design area than other three architectures. So area
and power wise the 32-bit MAC with CSKA is better as com
pared to other architectures.

`

TABLE 7

 FPGA SYNTHESIS RESULTS OF CONVENTIONAL AND PIPELINED
BOOTH WALLACE MAC UNIT

MAC Conventional MAC Proposed MAC

Size 32 bits 32 bits
Slice Flip-
Flops

237 1399

LUTs 3646 3298
Delay(ns) 24.1 10.5
Frequency
(MHz)

41.5 71

Power (mW) 279.2 531.42

The Pipelined MAC is synthesized using FPGA and Design
Compiler. Table 7 shows the compared result of MAC synthe-
sized on FPGA and Table 8 shows the results of Pipelined
Booth Wallace MAC.

TABLE 8
DESIGN COMPILER SYNTHESIS RESULTS OF PIPELINED 32-BIT MAC

UNIT.

 Proposed Booth Wallace MAC

 Worst Case Best Case Avg Case

Clock Period(ns)

2.43

1.1

1.45

Design Area 79970.35

79425.47

79890.38

Dynamic Power(mW) 17.3468

60.9256

36.5846

 Leakage Power(uW) 37.5806

124.1783

39.7328

Frequency (MHz) 411.52

909.09

689.65

TABLE 9
COMPARISON WITH OTHER 16-BIT PIPELINED MULTIPLIER REFER-

ENCES [6]

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 7
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

The design compiler results shows that in case of best case
analysis (FF corner) the MAC met all the constraints at the
clock period 1.1 ns or at the frequency 909.09 MHz and in
worst case scenario (SS corner) all the constraints at the clock
period 2.43 ns or at the frequency 411.52 MHz and in average
case scenario (TT corner) all the constraints at the clock period
1.45 ns or at the frequency 689.65 MHz

Verification Results:
This Proposed MAC is also verified with FPGA using SPAR-
TAN 3E Kit. To provide 64 bit input data Keyboard interfacing
is done and to see the results LCD interfacing is done with spar-
tan3E kit.

Fig10.2: LCD Display of 32-bit Booth Wallace MAC Unit.

5 CONCLUSION

The pipelining is the most widely used technique to improve
the performance of digital circuits but power increased. We
proposed architectures of the high-speed low power and less
area of modified Booth Wallace MAC. CSLA has comparative-
ly low value of critical path length hence less combinational
path delay but it has higher no. of leaf cell count and combina-
tional path area. It also has high dynamic power than CLA
and CSKA. So CLA and CSKA architectures can be used for
low power applications as it has low value of dynamic as well
cell leakage power.

6 REFERENCES
[1] Koc, C.K., “RSA Hardware Implementation”, RSA Laboratories, RSA

Data Security, Inc. 1996.
[2] Abdelgawad, A., Bayoumi, M., “High Speed and Area-Efficient Mul-

tiply Accumulate (MAC) Unit for Digital Signal Processing Applica-
tions”, IEEE International Symposium on Circuits and Systems, pp .
3199 – 3202, 2007.

[3] Fayed, Ayman A., Bayoumi, Magdy A., “A Merged Multiplier-
Accumulator for high speed signal processing applications”, IEEE In-
ternational Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pp 3212 -3215, 2002.

[4] A.D.Booth, “A Signed Binary Multiplication Technique”, Quarterly
J.MechanAppl.Math., vol.IV, 1951.

[5] Macsorley, O.L., “High-Speed Arithmetic in Binary Computers”,
Proceedings of the IRE, vol. 49, pp 67 – 91, 1961.

[6] Kim Soojin; Cho Kyeongsoon; “Design of High-speed Modified
Booth Multipliers Operating at GHz Ranges”, World Academy of
Science, Engineering and Technology, Issue 61, January 2010.

[7] Oklobdzija, V.G.; Villeger, D.; Liu, S.S.; “A method for speed opti-
mized partial product reduction and generation of fast parallel mul-
tipliers using an algorithmic approach” IEEE Transactions on Com-
puters, vol.45, pp 294 – 306, 1996.

[8] P. Devi and A. Girdher, “Improved Carry Select Adder with Re-
duced Area and Low Power Consumption”, International Journal of
Computer Applications (0975– 8887) vol. 3 – No.4, June 2010.

[9] R.P.P., Singh; B. Singh and P. Kumar, “Performance Analysis Of Fast
Adders Using VHDL”, International Conference on Advances in Re-
cent Technologies in Communication and Computing, 2009.

[10] A. A. A., Gutub and H. A., Tahhan, “Efficent Adders to Speedup
Modular Multiplication for Cryptography”, Computer Engineering
Department, KFUPM, Dhahran, SAUDI ARABIA, 2001.

[11] B. Parhami, “Computer Arithmetic, Algorithm and Hardware De-
sign”, Oxford University Press, New York, pp.73-137, 2000.

[12] K.C. Chang, “Digital system design with VHDL and Synthesis” An
integrated Approach IEE Computer Society, pp 408-437, 1999.

[13] Design Compiler User Guide v1999.10.
[14] HimanshuBhatnagar; “Advanced ASIC Chip Synthesis” using Syn-

opsys Design Compiler, Physical Compiler and Prime Time, 2nd
ed..Kluwer Academic Publishers, 2002.

[15] WengFook Lee, “VHDL Coding and Logic Synthesis with Synopsys”
Academic Press pp.147-227, 2000.

[16] HimaBinduKommuru Hamid Mahmoodi, “ASIC Design Flow Tuto-
rial Using Synopsys Tools”, Nano-Electronics & Computing Research
Lab School of Engineering San Francisco State University San Fran-
cisco, CA Spring 2009.

[17] Deschamps, J.P.; Bioul, G.J.A; Sutter,G.D.; “Synthesis of Arithmetic
Circuits”; FPGA, ASIC and Embedded Systems, John Wily & Sons
Inc., Publication, 2006.

[18] A. Weinberger; J.L. Smith, “A Logic for High-Speed Addition”, Na-
tional Bureau of Standards, Circulation 591, pp. 3-12, 1958.

[19] Neil. H. E. Weste , “Principle of CMOS VLSI Design”, Adison-Wesley
1998.

[20] Raahemifar, K. and Ahmadi, M., “Fast carry look ahead adder” IEEE
Canadian Conference on Electrical and Computer Engineering, 1999.

[21] Kantabutra, V., “Designing Optimum One-Level Carry-Skip Ad-
ders”, IEEE Transactions on Computers, pp.759-764, June 1993.

————————————————
 NaveenKumar has been completed M.Tech from Thapar University Patiala

in VLSI Design and CAD. E-mail: naveen209e@gmail.com
 Manu Bansal is currently pursuing PHD in VLSI inThapar University,

Patiala,. E-mail: mbansal@thapar.edu
 Amandeep Kaur has been completed M.Tech from Thapar University Patia-

la in VLSI Design and CAD. E-mail : amani.gem@gmail.com

