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Abstract—This paper describes the comparison of VLSI architectures on the basis of Speed, Area and Power of different type of Adders 
like Carry Chain Adder, Carry Look Ahead Adder, Carry Skip Adder, and Carry Select Adder and  32-bit pipelined Booth Wallace MAC Unit 
with Carry Chain Adder, Carry Look Ahead Adder, Carry Skip Adder, and Carry Select Adder is designed in which the multiplication is done 
using the Modified Booth Wallace algorithm and the pipelining is done in the Booth Multiplier and Wallace Tree to increase the speed. All 
Adder and MAC are described in VHDL and synthesized the circuit using 90 nm standard cell library on FPGA and Synopsys Design 
Compiler. As an hardware implementation all the adder and MAC are implemented on FPGA with test benches to cover all cases  on 
Spartan 3E kit with LCD and Keyboard interfacing.  

Index Terms—Multiplier, Adder, Pipelining, High-speed, modified Booth algorithm, Synopsys Design Compiler, FPGA. 

———————————————————— 

1 INTRODUCTION
he core of every microprocessor, DSP, and data-
processing ASIC is its data path. Statistics showed that 
more than 70% of the instructions perform additions and 

multiplications in the data path of RISC machines [1]. At the 
heart of data-path and addressing units in turn are arithmetic 
units, such as adders, and multipliers. Multiplication based 
operations such as Multiply and Accumulate and inner prod-
uct are among some of the frequently used Computation-
Intensive Arithmetic Functions, currently implemented in 
many DSP applications such as convolution, fast Fourier trans-
form, filtering and in microprocessors in its arithmetic and 
logic unit. Since multiplication dominates the execution time 
of most DSP algorithms, so there is a need of high speed mul-
tiplier. The demand for high speed processing has been in-
creasing as a result of expanding computer and signal pro-
cessing applications. 
Pipelined MAC based on Booth Wallace with Carry Select 
Adder is one of the fastest MAC Unit and Pipelined MAC 
with Carry Look Ahead Adder and MAC with Carry Skip 
Adder require the low power and less area. Modified Booth 
algorithm reduces the number of partial products to be gener-
ated and is known as the fastest multiplication algorithm and 
many researches on the multiplier architectures including ar-
ray, parallel and pipelined multipliers have been pursued 
which shows that pipelining is the most widely used tech-
nique to reduce the propagation delays of digital circuits. 
Finally, the basic operation found in MAC is the binary addi-
tion. Therefore, binary addition is the most important arithme-
tic operation. It is also a very critical one if implemented in 
hardware because it involves an expensive carry-propagation 
step, the evaluation time of which is dependent on the oper-
ands. 

 
2 ADDER ARCHITECTURES 
2.1 Ripple Carry Adder 
This is the simplest design in which the carry-out of one bit is 
simply connected as the carry-in to the next [1]. It can be im-
plemented as a combination circuit using n full-adder in series 
as shown in Fig 1 and is called ripple-carry adder.                              

 
Fig 1: Ripple carry implementation of CPA. 

The latency of k-bit ripple-carry adder can be derived by con-
sidering the worst-case signal propagation path. As shown in 
Fig 2 the critical path usually begins at the x0 or y0 input pro-
ceeds through the carry-propagation chain to the leftmost FA 
and terminates at the sk-1 output.   
 

 
Fig 2:Critical paths in a k-bit RCA [11]. 

The critical path might begin at c0 and/or terminate at ck. 
However given that the delay from carry-in to carry-out is 
more important than from x to cout or from cin to s, full-adder 
designs often minimize the delay from cin to cout, making the 
path as shown in Fig 2 with the largest delay. Thus the expres-
sion for latency of k-bit ripple-carry adder is 

௥ܶ௜௣௣௟௘ି௔ௗௗ = ிܶ஺(ݕ,ݔ → ܿ௢௨௧) + (݇ − 2) ∗ ிܶ஺( ௜ܿ௡ → ܿ௢௨௧)
+ ிܶ஺( ௜ܿ௡ →  (ݏ

Where TFA (inputoutput) represents the latency of a full-
adder on path between its specified input and output. As an 
approximation to the foregoing, it can be concluded that the 
latency of a ripple-carry adder is	kT୊୅[11]. It is seen that the 
latency grows linearly with k, making the ripple-carry design 
undesirable for large k or for high-performance arithmetic 
unit. However a carry completion detection adder takes ad-
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vantage of the logଶ k average length of the longest carry chain 
to add two k-bit binary number in O (log k) time on the aver-
age. 

2.2 Carry-look ahead Adder  
The carry-look ahead adder (CLA) [18] computes group gen-
erate signals as well as group propagate signals to avoid wait-
ing for a ripple to determine if the first group generates a carry 
or not. From the point of view of carry propagation and the 
design of a carry network the actual operand digits are not 
important. What matters is whether in a given position a carry 
isgenerated, propagated or annihilated. In the case of binary 
addition the generate (gi), propagate(pi) and annihilate(ai) 
signals [11][19][20] are characterized by the following logic 
equations: 

݃௜ = ௜ݕ.௜ݔ  
௜݌ = 	௜ܽ݅ݕ௜ݔ = ݅ݔ൫ݐ݋݊ + 	  ൯݅ݕ

௜ݐ = ௜ݔ +  ௜ݕ
Thus assuming that the above signals are produced and made 
available, the rest of the carry network design can be based on 
them and become completely independent of the operands or 
even the number representation radix. Using the preceding 
signals, the carry recurrence can be written as follow 
c୧ାଵ = g୧ + c୧. p୧   
The carry recurrence essentially states that a carry will enter 
stage i+1 if it is generated in stage i. The later version of carry 
recurrence leads to slightly faster adders because in binary 
addition, ti is easier to produce than pi. (OR instead of XOR). 
c୧ାଵ = g୧ + c୧. t୧ .  

 
Fig3: Carry Look Ahead Logic in CLA. 

Carry-look ahead adder hardware may be designed as shown 
in Fig 3. The carry-look ahead   logic   consists   of   two   logic 
levels, AND gates followed by an OR gate, for each ci when 
the adder inputs are loaded in parallel, all gi and pi will be 
generated at the same time. The carry-look ahead logic allows   
carry   for   each   bit   to   be   computed independently.   Ide-
ally, the   carry   signal ci will be produced through two-stage 
logic at the same time, which means that the adder will have a 
constant time complexity. However, it is impractical to build a 
two stage full large-size carry-look ahead adder because of the 

practical   limitations   on   fan-in   and   fan-out,   irregular 
structure, and long wires delay [1]. The total delay of  the  car-
ry-look ahead  adder  is  O (log  k)  which  can  be significantly 
less than the carry chain adder. There is a penalty paid for this 
gain in term increased area. The carry- look ahead adders re-
quire O (k * log k) area. It seems that a carry-look ahead adder 
larger than 256 bits is not cost effective. Even by employing 
block carry-look ahead approach, a carry-look ahead adder 
with 1024 bits seems not feasible or cost effective [1]. 

2.3Carry Skip Adder 
The carry skip adder (CSKA) [11][21] was invented for deci-
mal arithmetic operations. The CSKA is an improvement over 
the   ripple-carry   adder. By grouping   the   ripple   cells to-
gether into blocks, it makes the carry signal available to the 
blocks further down the carry chain, earlier. The primary  car-
ry  ci   coming  into  a  block  can  go  out  of  it unchanged  if  
and  only  if,  xi   and  yi   are  exclusive-or  of each  other.  This 
means that corresponding bits of both operands within a block 
should be dissimilar.  
If xi = yi = 1, then the block generates a carry without waiting 
for the incoming carry signal.  And the generated carry will be 
used by blocks beyond this block in the carry chain.  
If xi = yi = 0, then the block does not generate a carry and will 
absorb any carry coming into it by AND all pi of a block.  
The skip signal will be generated to select between the incom-
ing carry and the generated carry using a 2:1 multiplexer as 
shown in Fig 4. The last FA stage of a block will generate a 
carry, if any, before arrival of the input carry ci. When the in-
put carry arrives, it needs to pass through two  logic  gates  
only  so  that  the  output  carry  ci+1   will stabilize. 

c i-1

x i y ix i+1 y i+1

p is i
s i+1

p i+1

Skip signal

c i
c

 
Fig 4:Carry-skip logic [12]. 

Subsequent blocks can have larger size so that the carry will 
skip more bits and the adder speed will be increased. In this 
case, the adder is called one-level carry-skip adder with varia-
ble block sizes. The  skip  logic  determines  whether  a  carry  
entering  one block  may  skip  the  next  group  of  blocks.  
However, the main design problem with the adder is working 
out how best to group the skips. 
The   carry-skip   adder   has   a   simple   and   regular struc-
ture that requires an area in the order of O (k) which is hardly 
larger than the area required by the ripple-carry adder. The 
time complexity of the carry-skip adder is bounded   between   
O (k) and   O (log k). An   equal block size one-level carry-skip 
adder will have a time complexity of O (k).  Block width tre-
mendously affects the latency of adder. More number of 
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blocks means block width is less, hence more delay.  

2.4 Carry Select Adder  
The carry-select adder (CSLA) comes in the category of condi-
tional sum adder. Conditional sum adder works on some con-
dition this scheme; blocks of bits are added in two ways: as-
suming an incoming carry of 0 or 1, with the correct outputs 
selected later as the block's true carry-in becomes known. With 
each level of selection, the number of known output bits dou-
bles, and leading to a logarithmic number of levels and thus 
logarithmic time addition.  
A single-level carry-select adder [11] is one that combines 
three kl/2-bit adders of any design into a k-bit adder as shown 
in Fig 5. One k1/2-bit adder is used to compute the lower half 
of the k-bit sum directly. Two k1/2-bit adders are used to 
compute the upper k1/2-bits of the sum and the carry-out un-
der two different scenarios: Ck/2 = 0 and Ck/2 = 1. The cor-
rect values for the adder's carry-out signal and the sum bits in 
positions kl/2 through k - 1 are selected when the value of 
Ck/2 becomes known. This technique of dividing adder in 
two stages increases the area utilization but addition operation 
fastens. 
 

4-bit 
Adder

4-bit 
Adder

4-bit 
Adder

MUX
M
U
X

M
U
X

MUX

1

0
0

Z[3:0]Z[7:4]Z[63:60]Cout

1

0

 
 
Fig 5:Carry Select Adder. 
 
3PIPELINED MULTIPLIER AND ACCUMULATOR 

 
In order to improve the speed of the MAC unit, there are two 
major bottlenecks that need to be considered. The first one is 
the fast multiplication network and the second one is the ac-
cumulator. Both of these stages require addition of large oper-
ands that involve long paths for carry propagation. 
The pipeline technique is widely used to improve the perfor-
mance of digital circuits. As the number of pipeline stages is 
increased, the path delays of each stage are decreased and the 
overall performance of the circuit is improved [6]. The various 
pipeline schemes have been investigated to find the optimum 
number of pipeline stages and the positions for the pipeline 
registers to be inserted in modified Booth multiplier in order 
to obtain the high-speed. 
The MAC unit basically do the multiplication of two numbers 
multiplier and multiplicand and add that product in result 
stored in the accumulator. The general construction of the 
MAC operation can be represented by this equation: 

 
 

Where the multiplier A and multiplicand B are assumed to 
have n bits each and the addend Z has (2n+1) bits. A basic 
MAC unit as shown in Fig 6 can be divided into two main 
blocks [2]. 
Multiplier 
Accumulator 

3.1 Multiplier 
Multiplication is a mathematical operation that at its simplest 
is an abbreviated process of adding an integer to itself a speci-
fied number of times. A number (multiplicand) is added to 
itself a number of times as specified by another number (mul-
tiplier) to form a result. A Fast Multiplication process consists 
of three steps [3]: 
Partial Product Generation. 
Partial Product Reduction. 
Final stage Carry Propagate Adder.  

 

 
Fig 6: Basic Architecture of Pipelined MAC Unit. 

Partial Product Generation:To generate the number of par-
tial product Radix-4 Modified booth encoding techniques have 
been used [4]. The Modified Booth Encoding (MBE) or Modi-
fied Booth’s Algorithm (MBA) was proposed by O. L. Macsor-
ley in 1961 [5]. Booth's radix-4 algorithm is widely used to re-
duce the area of multiplier and to increase the speed. The 
booth encoding algorithm is a bit-pair encoding algorithm that 
generates partial products which are multiples of the multipli-
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cand. The booth algorithm shifts and/or complements the 
multiplicand (X operand) based on the bit patterns of the mul-
tiplier (Y operand). Essentially, three multiplier bits [Y (i+1) ,Y 
(i) and Y (i-1) ] are encoded  into eight bits that are used to 
select multiples of the multiplicand [-2X,-X,0,+X,+2X] The 
three multiplier bits consist of a new bit pair [Y (i+1) and Y (i)] 
and the leftmost bit from the previously encoded bit pair [Y (i-
1)]. Grouping the three bits of multiplier with overlapping has 
half partial products which improve the system speed. 
Radix-4 Modified Booth's algorithm [6] is: 

 Y (i-1) = 0; Insert 0 on the right side of LSB of multi-
plier. 

 Start grouping each three bits with overlapping from 
Y (i-1). 

 If the number of multiplier bits is odd, add a extra 1 
bit on left side of MSB and generate partial product 
from Table 1. 

 When new partial product is generated, each partial 
product is added two bit left shifting in regular se-
quence. 

 It is then sign extended. 
 

TABLE 1 
RADIX-4 MODIFIED BOOTH ALGORITHM [6]. 

Yi+1 Yi Yi-1 Recoded Digit Operand Multiplication 
0 0 0   0 0 x  multiplicand 
0 0 1 +1  +1 x multiplicand 
0 1 0 +1 +1 x multiplicand 
0 1 1 +2 +2 x multiplicand 
1 0 0  -2 -2 x multiplicand 
1 0 1  -1 -1 x multiplicand 
1 1 0  -1 -1 x multiplicand 
1 1 1   0 0 x multiplicand 

Pipelining in Booth Multiplier:At first, modified Booth 
multiplier is partitioned into three pipeline stages according to 
the functionality of the circuit as shown in Fig 6. The critical 
path of the pipelined Booth multiplier is in the Wallace tree 
because it requires the most intensive computation. It means 
that delays can be further reduced by adding more pipeline 
registers within the Wallace Tree as shown in Fig 8. 
 
Partial Product Compression:Multiplier require high 
amount of power and delay during the partial products 
addition. At this stage, most of the multipliers are designed 
with different kind of multi operands adders that are capable 
to add more than two input operands and results in two 
outputs, sum and carry. The number of adders will be 
minimized by Wallace Tree. 
 
4:2 Compressors:It has 4 input lines X0, X1, X2, X3 that 
must be summed and has two output lines C and S which are 
so called result of compression. A 4:2 compressor can be im-
plemented with two stages of full adder (FA) connected in 
series as shown in Fig 7.Indeed a 4:2 structure is not a counter, 
since two output bits cannot represent five possible sums of 

four bits. Thus a carry out is necessary and subsequently carry 
in. The 4:2 compressor structure actually compress five input 
bit into three output. The output of 4:2 compressor consists  of 
one bit (sum) in position j and two bits in final carry and in-
termediate carry in position (j+1).  However a carry out is in-
dependent on carry in as shown in Fig 7. 

Carry in

A
B

cinSum Sum

Carry

3 XOR
Gates

Carry

Carry-Out

A
B

cin

In1

In2

In3

In4

 
Fig7:4:2 compressor logic diagram [7]. 

Pipelined Wallace Tree: Wallace Tree is a reduction tech-
nique that uses the carry save adder to add the partial prod-
ucts. A block diagram for the data distribution among a tree 
architecture that employs 4:2 compressors is shown in Fig 8. 
 

 
 
Fig8 :Pipelined Wallace Tree. 
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Each box contains the bits that are fed into a 4:2 compressor 
cell. It is, however, still the most critical part of the multiplier 
because it is responsible for the largest amount of computa-
tion. Naturally the pipeline registers should be inserted within 
the Wallace tree to improve the performance as shown in Fig 
8.The number of partial products of the N-bit modified Booth 
multiplier is N/2[4][5][6]. In case of the 32-bit modified Booth 
multiplier, the number of partial products is sixteen. In this 
three stage of pipelining is used, in 1st stage sum and carry of 
first four rows of compressors are stored in two pipeline regis-
ters. In 2nd stage these sum and carry are fed into the fifth and 
sixth row of compressors and their output is stored in pipeline 
registers. In 3rd stage the sum and carry of fifth and sixth row 
are added in seventh row of compressors. The Wallace tree 
adds four rows and generates two rows using 4:2 compres-
sors. One row represents the carries and the other row repre-
sents the sums. 
 
Final stage Carry Propagate Adder: This stage is also 
crucial for any multiplier because in this stage addition of 
large size operands is performed so in thisstage fast carry 
propagate adders like Carry-look Ahead Adder or Carry Skip 
Adder or Carry Select Adder can be used as per our 
requirement like Speed, Power and Area. 

3.2 Accumulator 
Accumulator basically consists of register and adder. Register 
hold the output of previous clock from adder. Holding out-
puts in accumulation register can reduce additional add in-
struction. An accumulator should be fast in response so it can 
be implemented with one of fastest adder like Carry-look 
Ahead Adder or Carry Skip Adder or Carry Select Adder. 
. 
4 EXPERIMENTAL RESULTS 
 
The 32-bit Pipelined Booth Wallace MAC has been imple-
mented on Spartan XC3S500-4FG320 device and simulated 
using Modelsimand synthesized using 90 nm technology us-
ing Synopsys Design Compiler and its results compared with 
the conventional MAC unit. 

4.1 Simulation Results: 
a,b : Input Data 32-bit 
clk :Input Clock 
z : Output Data 64-bit 

 
Fig 9: Simulated Waveform of Pipelined Booth Wallace MAC Unit 

 
TABLE 2 

SIMULATION RESULT VERIFICATION OF PIPELINED BOOTH WALLACE 
MAC UNIT. 

 clk1 clk2 clk3 clk4 clk5 clk6 clk7 clk8 clk9 

A 5 5 4 4 4 4 4 4 5 

b  3 3 3 3 3 3 3 3 7 

Z 15 30 45 60 75 90 105 117 129 

There is latency of 5 clock cycle means we get the final output of 
MAC in 6th clock cycle which is clear from the Table 2 and from 
Fig 9. 

4.2 Synthesis Results 
 

TABLE3 
 FPGA SYNTHESIS RESULTS OF DIFFERENT ADDERS. 

 

However CSLA has more LUTs than CCA and CLA but less 
than CSKA but it has very less combinational path delay. So 
CSLA is the best adder architecture where the operands size is 
large. 
 

TABLE 4 
DC SYNTHESIS RESULTS OF CARRY CHAIN ADDER. 

 

CSLA has comparatively low value of critical path length 
hence less combinational path delay but it has higher no. of 
leaf cell count and combinational path area. It also has high 
dynamic power than other adder architectures. It’s clear from 
the tables that CLA and CSKA architectures can be used for 

Size  CCA CLA CSLA CSKA 
No. of Slices 74 78 113 120 
4 input LUTs 128 143 210 223 
Bonded IOs 194 194 194 194 
Level of Logic 66 66 35 90 
Logic Delay (%) 61.2 61.8 57.4 63.2 
Route Delay (%) 38.8 38.2 42.6 36.8 
Max.Comb. Delay (ns) 80.954 70.909 48.31 80.923 

Adder Type CCA CLA CSLA CSKA 
Level of Logic 66 64 23 67 
Critical Path length 9.11 12.13 4.49 8.68 
Leaf Cell Count 223 191 544 256 
Total no. of  NET 352 319 673 385 
Comb.Area 1479 1432 3587 2057 
Dyn. Power(uW) 220  195  497 248 
Lkg.Power(nW) 952 904 2.14uW 1.13uW 
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low power applications as it has low value of dynamic as well 
cell leakage power. 

TABLE 5 
 FPGA SYNTHESIS RESULTS OF 32-BIT MAC UNIT. 

Final Stage Adder CCA CLA CSLA CSKA 
No. Of Slices 2179 2229 2071 2195 
Slice Flip-Flops 735 927 776 719 
4 input LUTs 4193 4303 4013 4231 
LUT Utilization % 45% 46% 43% 45% 
Bonded IOs 131 131 131 131 
Level of Logic 13 12 12 14 
Clock Period( ns) 15.994 14.577 14.081 15.614 
Frequency (MHz) 62.523 68.601 71.018 64.045 
Total Power (mW) 356.92 363.97 376.67 394.25 
 
The Table 5 shows that the LUTs used in 32-bit MAC with 
CSLA is lesser than other MAC architectures and has higher 
frequency of operations. So 32-bit MAC with CSLA is best in 
term of LUTs and frequency of operations but it requires more 
power supply than other MAC architectures. However MAC 
with CLA require less power supply than MAC  with other 
adder architectures. 
 

TABLE 6 
 DC SYNTHESIS RESULTS OF 32-BIT MAC UNIT. 

Adder Type CCA CLA CSLA CSKA 

Levels of Logic 37 35 54 49 

Critical Path length 3.27 3.24 3.82 4.02 

WNS -0.46 -0.44 -1 -1.21 

CLK Period(ns) 3 3 3 3 

Leaf Cell Count 17026 17360 13518 12936 

Comb. Area (C) 127823 130473 98513 89910 

Seq.  Area (S) 2751 2696 2698 2698 

C/S Ratio 46.45 48.39 36.50 33.31 

 Design Area 130575 133169 101212 92609 

Dyn.power(mW) 15.7928  15.7229  13.0224  11.46  

 Leakage Power(uW) 101.5989  103.3779  74.9818  67.33 
 
According to DC synthesis Results Table 6 for a fixed clock 
period,  MAC with CLA has less value of critical path length 
so have less value of critical path slack as well as total negative 
slack value so it can run on higher frequency than other 32-bit 
MAC architectures. However CSKA has less value of leaf cell 
count  and design area than other three architectures. So area 
and power wise  the 32-bit MAC with CSKA is better as com 
pared to other architectures.  

 
 
` 

 
TABLE 7 

 FPGA SYNTHESIS RESULTS OF CONVENTIONAL AND PIPELINED  
BOOTH WALLACE MAC UNIT  

MAC Conventional MAC Proposed MAC 

Size 32 bits 32 bits 
Slice Flip-
Flops 

237 1399 

LUTs 3646 3298 
Delay(ns) 24.1 10.5 
Frequency 
(MHz) 

41.5 71  

Power (mW) 279.2 531.42 
 
The Pipelined MAC is synthesized using FPGA and Design 
Compiler. Table 7 shows the compared result of MAC synthe-
sized on FPGA and Table 8 shows the results of Pipelined 
Booth Wallace MAC.  
 

TABLE 8 
DESIGN COMPILER SYNTHESIS RESULTS OF PIPELINED 32-BIT MAC 

UNIT. 
 

 Proposed Booth Wallace MAC 

 Worst Case Best Case Avg Case   

Clock Period(ns) 
 
2.43 

 
1.1 

 
1.45 

Design    Area 79970.35 
 
79425.47 

 
79890.38 

Dynamic Power(mW) 17.3468   
 
60.9256   

 
36.5846  

 Leakage Power(uW) 37.5806  
 
124.1783  

 
39.7328  

Frequency (MHz) 411.52 
 
909.09 

 
689.65 

 
 

TABLE 9 
COMPARISON WITH OTHER 16-BIT PIPELINED MULTIPLIER REFER-

ENCES [6] 
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The design compiler results shows that in case of best case 
analysis (FF corner) the MAC met all the constraints at the 
clock period 1.1 ns or at the frequency 909.09 MHz and in 
worst case scenario (SS corner) all the constraints at the clock 
period 2.43 ns or at the frequency 411.52 MHz and in average 
case scenario (TT corner) all the constraints at the clock period 
1.45 ns or at the frequency 689.65 MHz  

Verification Results: 
This Proposed MAC is also verified with FPGA using SPAR-
TAN 3E Kit. To provide 64 bit input data Keyboard interfacing 
is done and to see the results LCD interfacing is done with spar-
tan3E kit. 
 

 
Fig10.2: LCD Display of 32-bit Booth Wallace MAC Unit. 
 
 
5 CONCLUSION 

 
The pipelining is the most widely used technique to improve 
the performance of digital circuits but power increased. We 
proposed architectures of the high-speed low power and less 
area of modified Booth Wallace MAC. CSLA has comparative-
ly low value of critical path length hence less combinational 
path delay but it has higher no. of leaf cell count and combina-
tional path area. It also has high dynamic power than CLA 
and CSKA. So CLA and CSKA architectures can be used for 
low power applications as it has low value of dynamic as well 
cell leakage power. 
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